

25 years of *Campylobacter* and Campylobacteriosis in Iceland - lessons learned

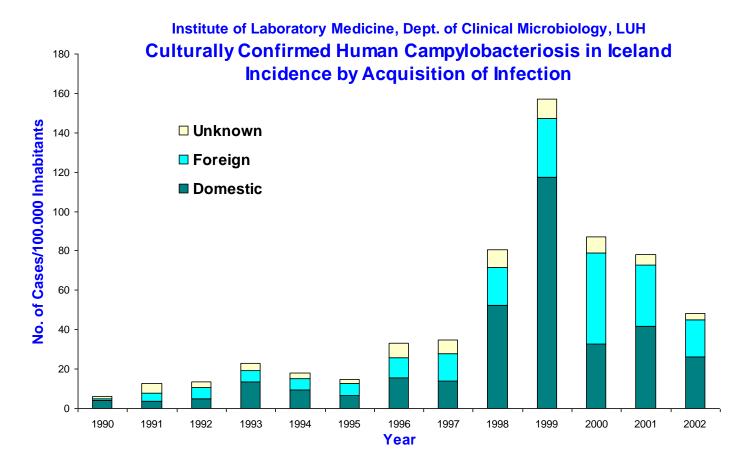
Vala Friðriksdóttir

EURL-Campylobacter workshop 2022

The Institute for Experimental Pathology at Keldur

The Icelandic Veterinary Institute

- Veterinary Diagnostic Services
 - Pathology, Histopathology, Bacteriology, Antimicrobial Resistance, Parasitology, Virology, Molecular Biology, Prionology, Fish Diseases
- Research Projects Animal Health
 - Focus on Horses, Sheep and Fish
- NRL National Reference laboratories
 - Campylobacter, Antimicrobial Resistance, Parasites, TSE, Fish Diseases, Scallop Diseases
- Accredited laboratories
- Vaccine production
- Blood products, Microbiological culture media
- Own legislation and finances


Campylobacter and poultry

- Poultry part of Icelandic farming from the beginning of times
 - Viking settlers (9th century) brought hens to Iceland
 - The "Settlers hen" almost did not make it through hard times
- Modern poultry farming started1940-1950
 - Broilers, turkeys, eggs
 - In the beginning only allowed to sell frozen chicken meat
 - 1996 allowed to sell fresh chicken meat
 - 1996-1999 proportion fresh meat increased rapidly <5% 60%
- Human Campylobacteriosis
 - Rapid increase 1998-2000
 - Domestic origin
 - Linked to increased consumption of fresh poultry meat
 - Consumers not aware of risk
 - Incorrect handling of meat

Human Campylobacteriosis 1990-2002 1999 epidemic linked to consumption of fresh poultry meat

Campylobacter in Iceland - animals and nature

- Before 1998 little known about Campylobacter
 - Campylobacter fetus isolated from aborted sheep
 - Campylobacter not considered a problem in poultry production
 - Campylobacter control not included in regulatory control in poultry production
 - Only mandatory Salmonella control
- 1999-2000 mapping Campylobacter distribution
 - Campylobacter widely distributed in nature
 - Farm animals, wild birds, surface water, sever
 - Important to show care when handling poultry products, untreated surface water, raw unpasteurized milk
 - Was the main cause of human Campylobacteriosis in 1998
 - 2021 still the main cause

Interventions - Preventive measures

- Campylobacteriosis epidemic (1998-2000)
 - Campylobacter control implemented in broiler production and slaughterhouses
 - Consumer education to prevent infection
 - Advertisement campaign
 - Cleanliness and correct handling of raw material

Campylobacter control - broilers

- Unique broiler flock breeding lot ID-number (RInr)
 - All information about Campylobacter (and Salmonella) status linked to RInr.
 - Official information collected regularly
- Increased biosecurity
 - Broiler house entrances

Before

Kept Salmonella out but not Campylobacter

After

Campylobacter also kept out

The "Campy on Ice" Project (2001-2004) Scientists USA, Canada, Sweden and Iceland USDA grant

- "Sources and Risk Factors for Campylobacter in Poultry and Impact on Human Disease in a Closed System"
- Use Iceland as a model well fitted
 - Good registration, closeness, few poultry breeders, easy to obtain and gather information, etc.
 - Collect samples for culture and/or DNA isolation at various stages of chicken breeding and broiler production
 - Collect various geographical, meteorological and environmental information
 - Generate database with all information, geospatial analysis
- Try to trace *Campylobacter* infection in chicken
 - Identify most important routes of infection
 - Identify factors contributing to infection

"Campy on Ice" Project – Lessons learned

- Biosecurity key factor
 - Cleanliness, hygiene barriers
 - All in all out (no thinning)
 - Disinfection of transport cages
 - UV treatment of water
- Age of broilers at slaughter is important
 - Especially during summer if biosecurity fails
 - Risk of infection increases with age
 - Age at slaughter 34-36 days

"Campy on Ice" Project – More lessons learned

• Freezing policy - 2000

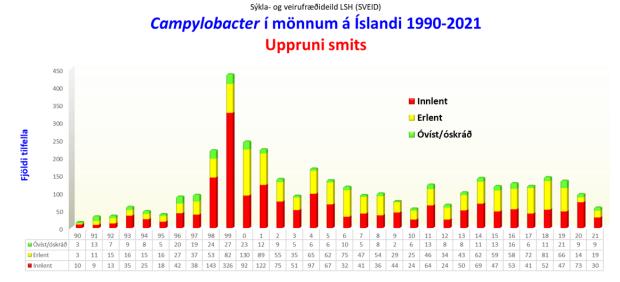
- Freezing all meat from flocks that test Campy+ pre-slaughter
- Freezing reduces Campylobacter on meat
 - Carcasses kept at -20°C for at least 2 weeks 1 log reduction
 - Lowers risk of infection up to 90%
- Farmers economically driven
 - Get higher price for fresh meat than frozen
- Plan slaughter according to Campylobacter status
 - Test faecal samples no later than 5 days before slaughter
 - Prevent product cross-contamination in the slaughterhouse
 - Campy+ flocks slaughtered at the end of the week

Campy on Ice - What we also learned

- No vertical transmission of Campylobacter
 - Grandparent flocks (Sweden) 52% Campy+
 - Fertilized eggs imported
 - Broiler parents (Iceland, 6 weeks old) 0% Campy+
 - Maternal antibodies only protective 2-3 weeks
 - Broiler parents (Iceland, 19 weeks old) 69% Campy+
 - No shared Campylobacter flaA SVR alleles between grandparent and broiler parent flocks
- Proximity to cattle farms
 - appears to increase *Campylobacter* risk, flies?
- Human Campylobacteriosis peak before broiler peak
 - Is there a common source of Campylobacter?

Campy on Ice – Still more lessons learned

- Important to keep flies out of the houses
 - Insect nets can reduce Campylobacter load in broiler houses
 - Especially during the summer months
 - Winter weather destructive to net structures



Human Campylobacteriosis 1990-2021

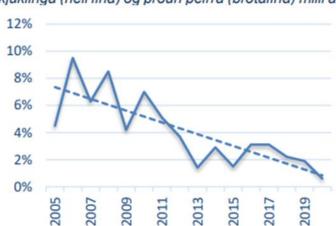
Still most common cause of zoonotic infection in Iceland Year 2019 – 38.1 pr. 100.000 inhabitants (Europe 59.7)

- Red domestic origin
- Yellow foreign origin
- Green unknown/not registered

Microbial criteria legislation – testing broiler neck skins Pre-existing legislation in Iceland stricter

• 2020

- <10 cfu/g 99.1%
- 10-100 cfu/g 0.7%,
- >100-500 cfu/g 0.1%)
- 2021
 - <10 cfu/g 99.2%
 - 10-100 cfu/g 0%,
 - 100-500 cfu/g 0.3%,
 - >500 cfu/g 0.5%


Sampling for antimicrobial resistance in Iceland

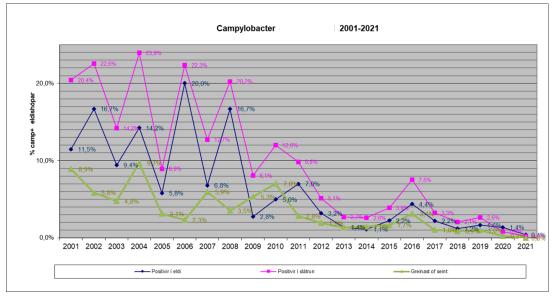
- 2020 broilers caeca
 - 693 samples
 - 7 isolates C. jejuni
 - All sensitive to all antibiotics tested
- 2021 pig caeca
 - 152 samples
 - 145 isolates C. coli
 - 110 (75.9%) Ciprofloxacin resistant
 - Sensitive to all other antimicrobials tested
- Europe (8 countries) 2019 and 2020
 - Pigs, *C.coli*, 52.4% CIP resistance
 - 2021 all EU MSs mandatory C. coli antimicrobial resistance results

Campylobacter status - broiler flocks

- Pre-slaughter sampling
 - 2005-2019
 - Percentage of Campylobacter positive flocks decreasing
 - Control measures work

Mynd 7. Campylobacter: Hlutfall jákvæðra eldishópa kjúklinga (heil lína) og þróun þeirra (brotalína) milli ára

Producer A – "What we have learned"


- Combined effort resulted in lowering Campylobacter contamination
 - Stick to good working ethics
 - Set strict hygienic rules and make sure they are followed
 - Insect netting (during the summer months) makes a difference
- More years with few Campylobacter positive flocks
 - Reducing environmental reservoir
 - Helps to lower contamination even more

Producer A - Campylobacter trend (2001-2021) % camp+ breeding lots

• Last 3 years no contaminated meat has entered shops

- Blue Positive pre-slaughter samples
- Pink Positive first at slaughter
- Green Campylobacter detected "to late"
 - Contaminated product fresh on market

Is the Icelandic model reproducible?

- Doubtful ?
- Iceland sparsely populated
 - Poultry producers few and far between
 - Poultry slaughterhouses only 3
 - Easy to control things,
 - Few decision layers and contact lines
- Cool climate extreme weather
 - Cold months little *Campylobacter*
 - Buildings have to be strong and tightly closed
 - "Outdoor happiness" not a possibility
 - Insects not abundant compared to other countries
 - Environmental load not high
- But you never know what economical benefit could lead to

Thank you for your attention

