# Multi country event of Campylobacter ST-464

Ásgeir Ástvaldsson

EURL-*Campylobacter* workshop Online event, September 26<sup>th</sup>, 2023





### January 2023

### Event ID 2023-FWD-00011 "Campylobacter jejuni cluster" registered in EpiPulse

- Reference sequence uploaded
- Matches in 4 other MS
- One MS claim imported poultry meat from another EU MS had a similar genotype

### May 2023

### **ECDC** wanted to explore this as a multi-country event

Possibly engage to a Joint Notification Summary (JNS) with EFSA.

May 11th: EURL-Campylobacter contacted by EFSA, meeting is held on May 15th

#### May 17<sup>th</sup>

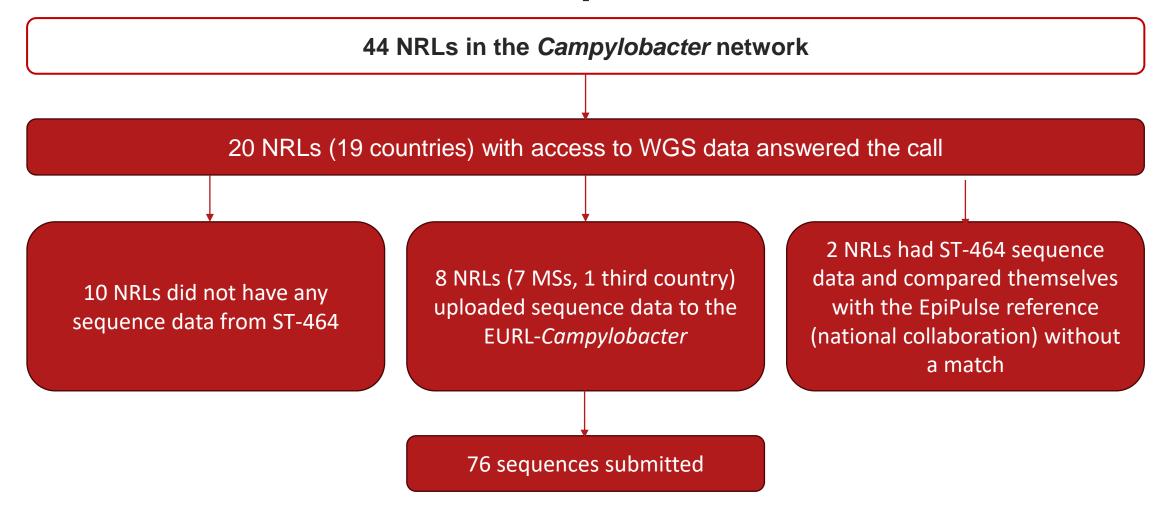
- EFSA informs Country officers about the upcoming exercise
- EURL-Campylobacter sends a letter to the NRLs on May 17<sup>th</sup> asking for:
  - Sequence data of ST-464 from isolates collected 2020 and onwards
  - Metadata
  - Background information on ST-464

#### June 16th 2023

End of call



#### **PubMLST**


- 1391 isolates and 634 genomes of ST-464 since first submission in the year 2000 (as of May 2023)
- Among the isolates with a known source: 97 % human and chicken origin
- From all over the world
- The closest match to the EpiPulse reference had 26 allele differences (ADs) from a human isolate from 2022

#### Literature

- The clonal complex (CC) ST-464 has been associated with both ciprofloxacin and fluoroquinolone resistance
- Appears in several national source attribution studies as a "chicken ST"



# **Participation**

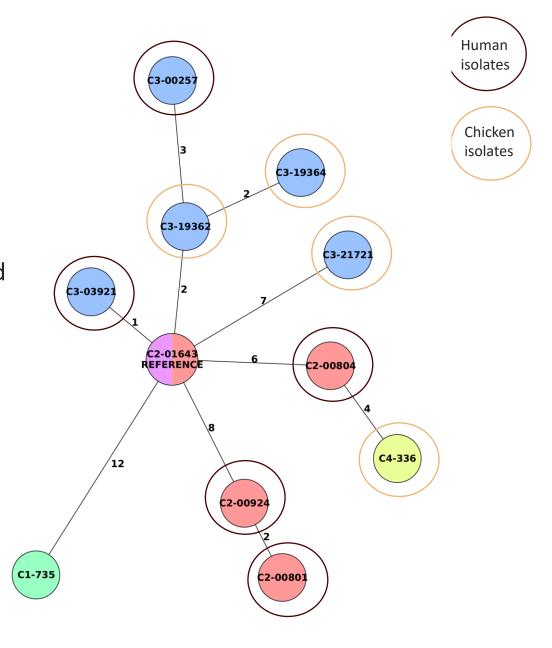




## Sequence analysis



Sequences analyzed in Ridom SeqSphere+ with the 'Oxford scheme' (1343 loci) cgMLST/wgMLST.



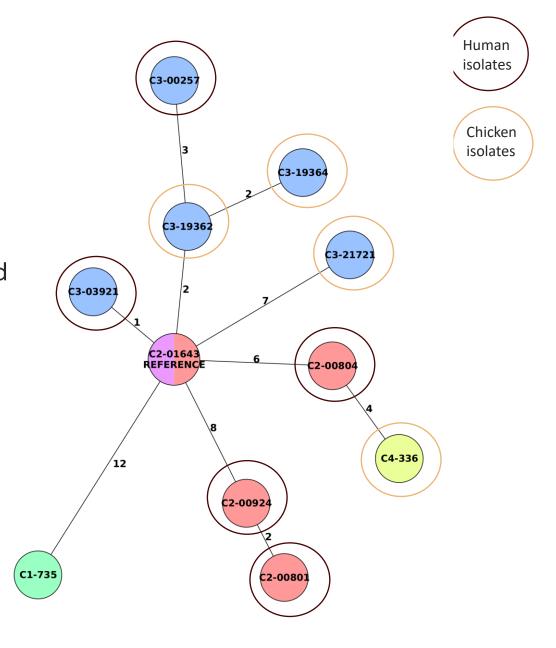

4 NRLs had sequences that clustered with the reference genome from EpiPulse with 12 AD or less.



## Results

- 1 strain from Country 1. No metadata.
- 4 strains from Country 2. Human origin.
- 5 strains from Country 3. Two strains of human origin and three from chicken meat collected at retail – origin unknown.
- 1 strain from Country 4. Imported chicken meat.








## Results

- 1 strain from Country 1. No metadata.
- 4 strains from Country 2. Human origin. (April-July 2022)
- 5 strains from Country 3. Two strains of human origin and three from chicken meat collected at retail – origin unknown. (Feb 2021- Sept 2022)
- 1 strain from Country 4. Imported chicken meat. (2022)

Reference: 2023







# Comparison cgMLST and SNP-analysis

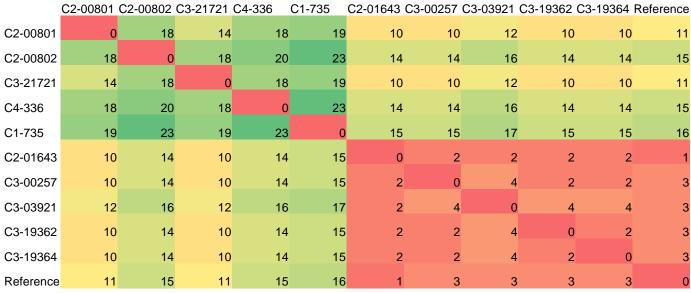
- Results displayed in distance matrices
- Numbers are AD or SNPs
- Ridome SeqShere/Oxford scheme
- Snippy/EpiPulse reference genome

SNP-analysis with only filtering on sequence quality

2021

|           | REFERENCE | C2-<br>01643 | C3-<br>03921 | C3-<br>19362 | C3-<br>19364 | C3-<br>00257 | C2-<br>00804 | C4-336 | C3-<br>21721 | C2-<br>00924 | C2-<br>00801 | C1_<br>735 |
|-----------|-----------|--------------|--------------|--------------|--------------|--------------|--------------|--------|--------------|--------------|--------------|------------|
| REFERENCE | 0         | 0            | 1            | 2            | 3            | 4            | 6            | 6      | 7            | 8            | 10           | 12         |
| C2-01643  | 0         | 0            | 1            | 2            | 3            | 4            | 6            | 6      | 7            | 8            | 10           | 12         |
| C3-03921  | 1         | 1            | 0            | 3            | 4            | 5            | 7            | 7      | 8            | 9            | 11           | 13         |
| C3-19362  | 2         | 2            | 3            | 0            | 2            | 3            | 6            | 6      | 7            | 8            | 10           | 12         |
| C3-19364  | 3         | 3            | 4            | 2            | 0            | 3            | 7            | 7      | 8            | 9            | 11           | 13         |
| C3-00257  | 4         | 4            | 5            | 3            | 3            | 0            | 8            | 8      | 9            | 10           | 12           | 14         |
| C3-00804  | 6         | 6            | 7            | 6            | 7            | 8            | 0            | 4      | 7            | 8            | 8            | 12         |
| C4-336    | 6         | 6            | 7            | 6            | 7            | 8            | 4            | 0      | 7            | 8            | 10           | 12         |
| C3-21721  | 7         | 7            | 8            | 7            | 8            | 9            | 7            | 7      | 0            | 9            | 11           | 13         |
| C2-00924  | 8         | 8            | 9            | 8            | 9            | 10           | 8            | 8      | 9            | 0            | 2            | 14         |
| C2-00801  | 10        | 10           | 11           | 10           | 11           | 12           | 8            | 10     | 11           | 2            | 0            | 16         |
| C1_735    | 12        | 12           | 13           | 12           | 13           | 14           | 12           | 12     | 13           | 14           | 16           | 0          |

|   |           | C3-21721 | C4-336 | C2-00801 | C1-735 | C2-00802 | C2-01643 | C3-00257 | C3-03921 | C3-19362 | C3-19364 | Reference |
|---|-----------|----------|--------|----------|--------|----------|----------|----------|----------|----------|----------|-----------|
|   | C3-21721  | 0        | 130    | 98       | 144    | 141      | 135      | 136      | 137      | 135      | 135      | 136       |
|   | C4-336    | 130      | 0      | 75       | 114    | 109      | 105      | 106      | 107      | 105      | 105      | 106       |
|   | C2-00801  | 98       | 75     | 0        | 80     | 77       | 71       | 72       | 73       | 71       | 71       | 72        |
|   | C1-735    | 144      | 114    | 80       | 0      | 25       | 15       | 16       | 17       | 15       | 15       | 16        |
|   | C2-00802  | 141      | 109    | 77       | 25     | 0        | 16       | 17       | 18       | 16       | 16       | 17        |
|   | C2-01643  | 135      | 105    | 71       | 15     | 16       | 0        | 3        | 2        | 2        | . 2      | 1         |
|   | C3-00257  | 136      | 106    | 72       | 16     | 17       | 3        | C        | 5        | 3        | 3        | 4         |
|   | C3-03921  | 137      | 107    | 73       | 17     | 18       | 2        | 5        | 0        | 4        | . 4      | . 3       |
| • | C3-19362  | 135      | 105    | 71       | 15     | 16       | 2        | 3        | 4        | 0        | 2        | 3         |
| • | C3-19364  | 135      | 105    | 71       | 15     | 16       | 2        | 3        | 4        | 2        | . 0      | 3         |
|   | Reference | 136      | 106    | 72       | 16     | 17       | 1        | 4        | . 3      | 3        | 3        | 0         |




# Comparison cgMLST and SNP-analysis

- Results displayed in distance matrices
- Numbers are AD or SNPs
- Ridome SeqShere/Oxford scheme
- Snippy/EpiPulse reference genome

- SNP-analysis with hands-on filtering (removal of a region with many mutations)
- Good correlation between the systems

|           | REFERENCE | C2-<br>01643 | C3-<br>03921 | C3-<br>19362 | C3-<br>19364 | C3-<br>00257 | C2-<br>00804 | C4-336 | C3-<br>21721 | C2-<br>00924 | C2-<br>00801 | C1_<br>735 |
|-----------|-----------|--------------|--------------|--------------|--------------|--------------|--------------|--------|--------------|--------------|--------------|------------|
| REFERENCE | 0         | 0            | 1            | 2            | 3            | 4            | 6            | 6      | 7            | 8            | 10           | 12         |
| C2-01643  | 0         | 0            | 1            | 2            | 3            | 4            | 6            | 6      | 7            | 8            | 10           | 12         |
| C3-03921  | 1         | 1            | 0            | 3            | 4            | 5            | 7            | 7      | 8            | 9            | 11           | 13         |
| C3-19362  | 2         | 2            | 3            | 0            | 2            | 3            | 6            | 6      | 7            | 8            | 10           | 12         |
| C3-19364  | 3         | 3            | 4            | 2            | 0            | 3            | 7            | 7      | 8            | 9            | 11           | 13         |
| C3-00257  | 4         | 4            | 5            | 3            | 3            | 0            | 8            | 8      | 9            | 10           | 12           | 14         |
| C3-00804  | 6         | 6            | 7            | 6            | 7            | 8            | 0            | 4      | 7            | 8            | 8            | 12         |
| C4-336    | 6         | 6            | 7            | 6            | 7            | 8            | 4            | 0      | 7            | 8            | 10           | 12         |
| C3-21721  | 7         | 7            | 8            | 7            | 8            | 9            | 7            | 7      | 0            | 9            | 11           | 13         |
| C2-00924  | 8         | 8            | 9            | 8            | 9            | 10           | 8            | 8      | 9            | 0            | 2            | 14         |
| C2-00801  | 10        | 10           | 11           | 10           | 11           | 12           | 8            | 10     | 11           | 2            | 0            | 16         |
| C1_735    | 12        | 12           | 13           | 12           | 13           | 14           | 12           | 12     | 13           | 14           | 16           | 0          |





## **Conclusions**

- Received limited background information on this ST in the call
- Patients in several (at least five) different European countries have been ill from this specific genotype
- The source is most likely chicken
- From the limited data available we cannot point out a specific country to continue the investigation
- Complication: this genotype seems to be a stable genetic lineage
  - How frequent are stable genetic lineages cross-country and how to deal with them?



## **Lessons learnt**

- Engaged network of NRLs
- Sharing metadata is very important
  - Hopefully improved once Campylobacter is in the One Health WGS system
- Sharing data gives us important insight about the pathogen



## **Future data calls**

### Through the EFSAs One Health WGS system?

Already in place for Salmonella, Listeria and E. Coli

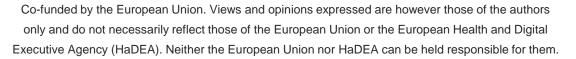
- Collecting data from multiple countries simplified
- Improved sharing of metadata
- Standardized analysis pipeline
- Better understanding off cross-country behavior of Campylobacter



## **Acknowledgements**

**EURL-Campylobacter** 

Hanna Skarin


Bo Segerman

The *Campylobacter* NRL network

# Thank you for your attention!







