




Animal & Plant Health Agency

# **METhepaticus :**

# Development of tools to detect *Campylobacter hepaticus*, the causative agent of Spotty Liver Disease in poultry.

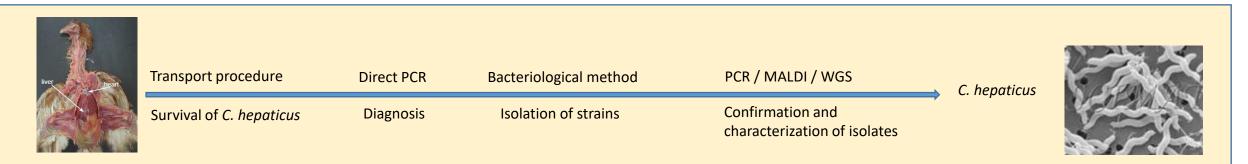


Workshop Campylobacter / 26-27 September 2023

#### **Context of the study**

### Spotty liver disease (SLD)

- emerging disease particularly in outdoor laying hens, causing egg laying drop and mortality with an economic impact on egg industry
- ✓ more prevalent in hot weather suggesting an increase in prevalence with global warming
- ✓ hepatitis with whitish grey spots on the surface of the liver and gallbladder infection.


## Campylobacter hepaticus

## ( in 2023, Campylobacter bilis)

- ✓ atypical *Campylobacter* difficult to cultivate on conventional media
- $\checkmark$  no harmonised protocols for isolation of the organism and confirmation of the disease.

## **METHepaticus**

- → to develop efficient and harmonized protocols from farms to laboratories :
- $\checkmark$  for transporting samples to the lab without affecting bacteria survival
- ✓ for detecting of *C. hepaticus* from liver with bacteriological and molecular methods
- $\checkmark$  For the isolation and characterization of *C. hepaticus* strains
- → beneficial for veterinarians, testing laboratories and research institutes.

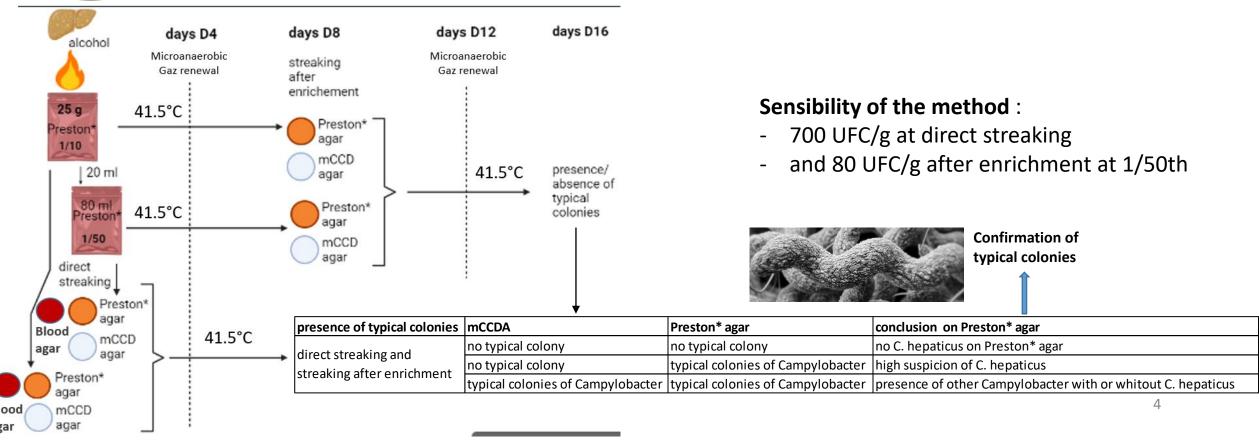




#### **anses T1.** Bacteriological method for detection of *C. hepaticus* and recovering of isolates from liver

| Problems to solve                                                                                                    | Tests carried out from artificially contaminated livers                                                                                     |  |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| difficult to cultivate on selective conventional<br><i>Campylobacter</i> media : mCCDA, Karmali, Bolton,<br>Butzler, | Blood agar / blood agar + metronidazole /<br>blood agar + bile salts / Preston agar<br>Preston broth                                        |  |
| slow growth / small colonies                                                                                         | Duration of agar and broth incubation : 4 / 8 days<br>Temperature of incubation : 37°C vs 41.5°C<br>Growth supplement* in broth and in agar |  |
| background flora and other <i>Campylobacter</i><br>on the sampled liver<br><i>Campylobacter jejuni</i>               | Flaming livers<br>Direct streaking vs streaking after enrichment<br>1/10 vs 1/50 in enrichment broth // Selective agar = Preston agar       |  |
| Carnobacterium maltaromaticum<br>Lactobacillus crispatus<br>Aeromonas spp                                            |                                                                                                                                             |  |
| Streptococcus parauberis<br>Proteus mirabilis                                                                        |                                                                                                                                             |  |
|                                                                                                                      | <ul> <li>streaking on Columbia agar with blood (GCS) (non-selective agar)</li> <li>identification of isolates by MALDI-TOF</li> </ul>       |  |
|                                                                                                                      |                                                                                                                                             |  |
| Pantoea agglomerans                                                                                                  |                                                                                                                                             |  |
| Staphylococcus saprophyticus ssp<br>saprophyticus                                                                    |                                                                                                                                             |  |




soaking the liver in alcohol, then flaming

#### WP1 : LABORATORY METHODS FOR C. HEPATICUS

T1. Bacteriological method for detection of *C. hepaticus* and recovering of isolates from liver



First method : streaking before and after enrichment in Preston broth





T1. Bacteriological method for detection of *C. hepaticus* and recovering of isolates from liver

#### Second method with filter

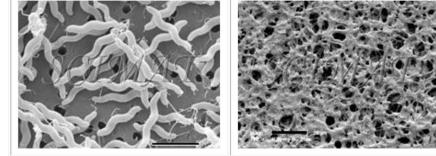
chicken livers spiked with different levels of *C. hepaticus* 



the liver is diluted and ground

one ml is placed on the filter




Incubation of the plates

*C. hepaticus* passes through the filter

Low sensitivity of the method : High levels of *C.hepaticus* are required for a positive result

- MF-Millipore<sup>™</sup> Membrane Filter (DAWP04700), 0.65 µm pore size, mixed cellulose esters (MCE) membrane (nitrocellulose) (NC)
- Isopore Membrane Filter (DTTP04700), 0.6 µm pore size, hydrophilic polycarbonate membrane (PC)

not a suitable method for detection of *C. hepaticus* from field samples 5



**T2.** Confirmation of isolates as *C. hepaticus*.

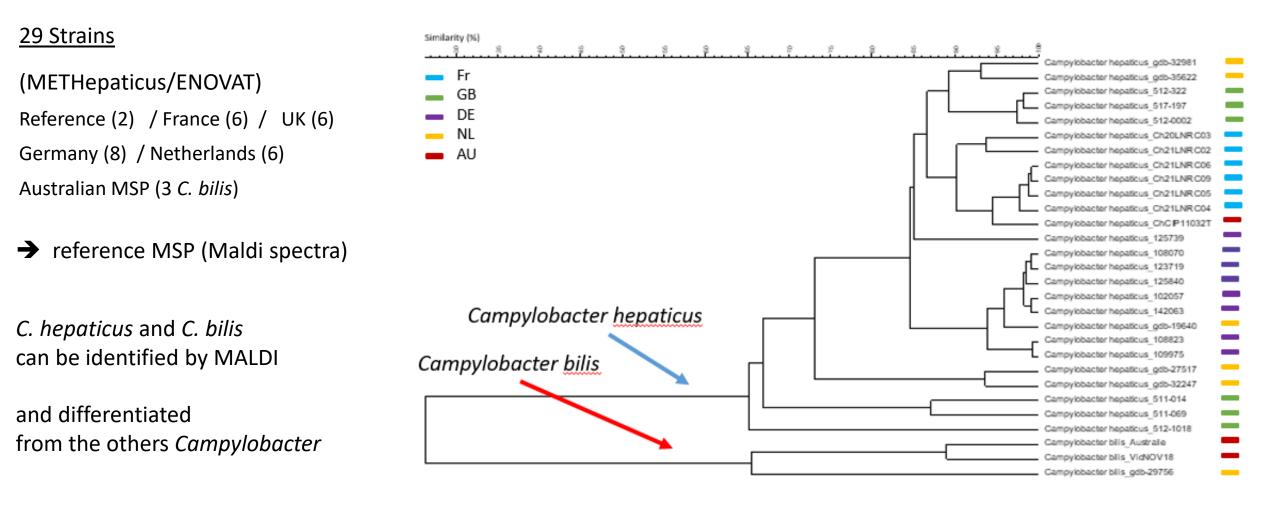
Morphology under microscope



Campylobacter

#### PCR sybergreen from Van et al. (2017)

Amplification of glycerol kinase gene PCR which also amplifies *C. bilis* but does not allow differentiation between *C. hepaticus* and *C. bilis* 


#### MALDI-TOF

Comparison of the MSP (Maldi spectra ) with reference MSPs But not reference MSPs of *C. hepaticus* and *C. bilis* in the Bruker data base

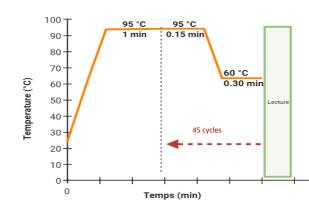
Generate reference MSP

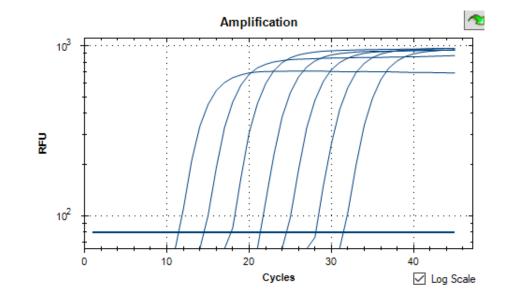


#### T2. Confirmation of isolates as *C. hepaticus* : MALDI-TOF



The species of the strains were also confirmed by Whole Genome Sequencing

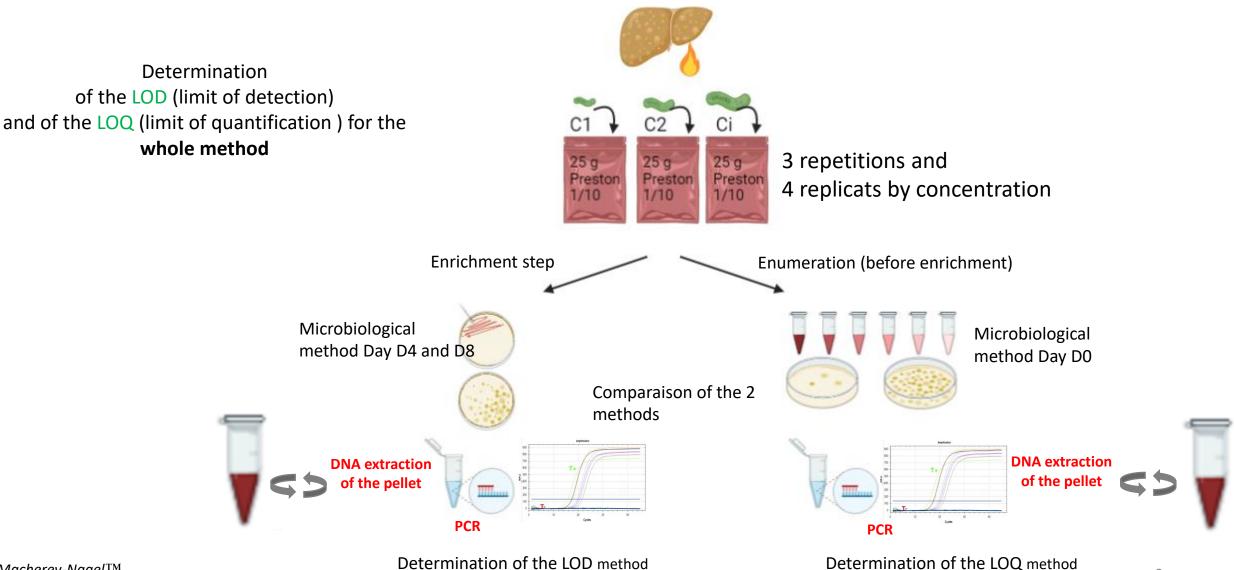

The reference MSP generated were shared to all the METhepaticus partners




#### T3. Molecular method for detection of *C. hepaticus*

#### → quantitative PCR method for the detection (diagnosis) and quantification of *C. hepaticus*

- Design of a PCR primers and probes targeting the glycerol kinase gene (Van et al., 2016): Amplicon size 191 bp
- Optimal conditions for the amplification :
- PCR Efficiency: 98.8% over a wide dynamic range of 7 log






- <u>Specificity:</u>
  - Inclusivity on 6 C. hepaticus isolated by the French NRL
  - Exclusivity on 83 *Campylobacter* strains belonging to 8 species + 19 non *Campylobacter* strains
- <u>Sensibility</u>:
  - Limit of Detection LODpcR: 5 copy / μL
  - Limit of Quantification LOQPCR: 100 copy / μL



#### T3. Molecular method for detection of *C. hepaticus*



Macherey-Nagel<sup>TM</sup> NucleoMag<sup>TM</sup> 96 Tissue kit. Determination of the LOD method

# → to test the robustness of the protocol "Detection and confirmation of Campylobacter hepaticus / Campylobacter bilis in

chicken liver" following SOP produced from Anses

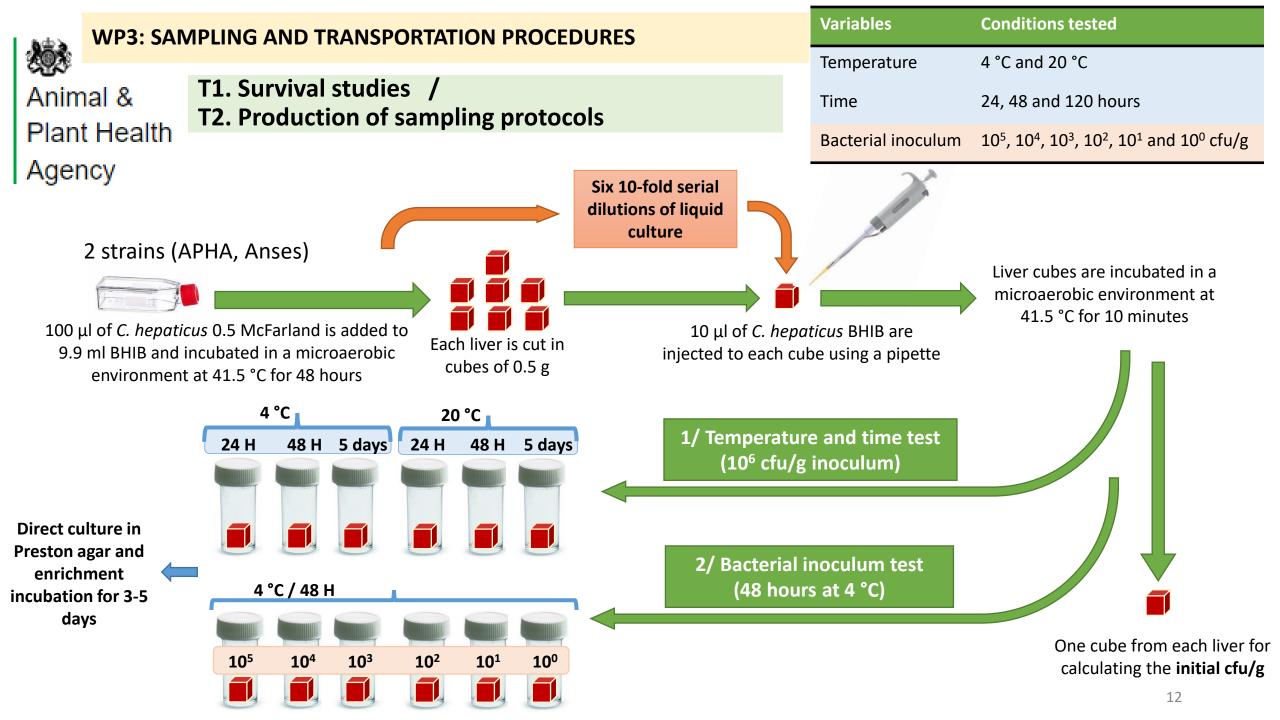
First, SVA had to produce stable *C. hepaticus* and *C. bilis* reference materials

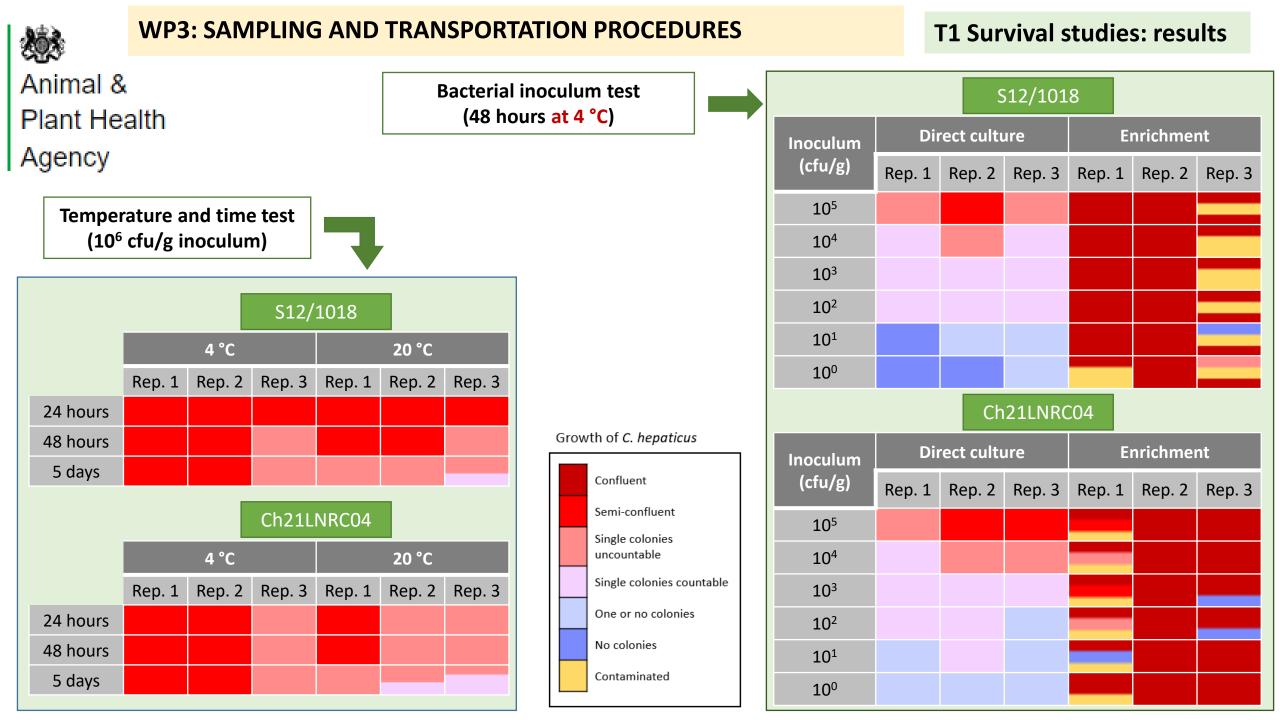
#### ILS performed April – May 2023 :

Four institutes participated to ILS (APHA, Anses, WBVR, Royal GD).

The SOP included background information to spread awareness about the disease

- <u>Contents of the ILS packages</u>:
  - One bag of approx. 170 g whole chicken livers
  - 5 vials with freeze-dried sample (with or without *Campylobacter*)
  - All reagents required for qPCR (Van et al. 2017)
- The SOP method included
  - Detection (by parallell procedures for enrichment / direct streak)
  - confirmation by PCR (Van et al. 2017) and MALDI-TOF (optional)




## **ILS results**

| 2 samples containing                   | correctly reported as positive for <i>C. hepaticus</i> or <i>C. bilis</i>                                                                                                                                                                                       |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>C. hepaticus</i>                    | by all 4 participants                                                                                                                                                                                                                                           |
| 1 sample containing<br><i>C. bilis</i> | reported as positive for <i>C. hepaticus</i> or <i>C. bilis</i> by <b>2 participants</b><br>reported as negative for <i>C. hepaticus</i> and <i>C. bilis</i> by <b>2 participants</b><br>(suspected <i>Campylobacter</i> colonies negative at PCR confirmation) |
| 2 samples not containing               | correctly reported as negative for                                                                                                                                                                                                                              |
| <i>C. hepaticus</i> or <i>C. bilis</i> | <i>C. hepaticus</i> and <i>C. bilis</i> by all <b>4 participants</b>                                                                                                                                                                                            |

The laboratory procedure (enrichment, direct streak, medium) producing the final results varied between samples and participants highlighting the need for parallel procedure.

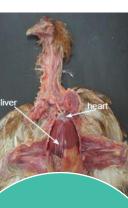






Animal & Plant Health Agency

#### WP3: SAMPLING AND TRANSPORTATION PROCEDURES


#### T2 Production of sampling and transport protocols -> recommendations



Place chicken carcases in a sterile container.

Place the primary container inside a leak-proof secondary container and this container inside a tertiary container with ice packs (temperature between 2-8 °C).





Post-mortem examination using a method as aseptic as possible Collect the chicken liver in a sterile container and maintain the sample between 2-8 °C until processing.

Flame-sterilise the surface of the liver (step not tested)

48 hours after sampling: Reliable identification of up to 10<sup>2</sup> cfu/g by direct culture. Lower cfu/g could be detected by enrichment

> Macerate the liver in Preston broth and proceed with direct culture and enrichment culture to isolate C. hepaticus

Process the livers as soon as possible after collection. Ideally, within 48 hours after sampling. No later than 120 hours after sampling.

#### Thanks to all our partners for this successful collaboration



Muriel Guyard Bérengère Nagard Ségolène Quesne Camille Lucas Elisabeth Repérant Martine Denis



Hanna Skarin Helena Höök Sevinc Ferrari



Miriam Koene Conny Van Solt Alieda van Essen Animal & Plant Health Agency

John Rodgers Sandra Laborda-Anadon Franziska Williams Megan Canon James Coates Shaun Cawthraw Miranda Kirchner

